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false lock phenomenon, and that high-speed high-ac-

curacy demodulation is achievable by a simple configura-

tion. The influences of some degradation factors to bit-

error-rate characteristics are studied experimentally, and

their design objectives are stated.
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Calibrating the Six-Port Reflectometer by
Means of Sliding Terminations

GLENN F. ENGEN, SENIOR MEMBER, IEEE

Abstract-The six-port technique promises to have a major impact on

the next generation of automatic network analyzers because complex
heterodyne methods may be replaced by simple ampfftnde detectors. Tbfs

projection, however, is predicated upon the existence or development of
caffbration techniques which permit one to conveniently and accurately
obtain the parameters which characterize the six-port. ‘IIds paper describes
a number of substantial refinements to a previously described procedure
which is based upon the use of sfidmg terminations.

I. INTRODUCTION

T HE APPEAL OF the six-port measurement concept

stems largely from the simplification which it affords

in the associated detection circuitry. Instead of complex

heterodyne schemes, simple diode, thermoelectric, or

bolometric detectors may be used. Because frequency

conversion and mixing have been eliminated, practical

experience, to date at least, indicates that a high order of

stability in the source frequency, e.g., a frequency synthe-

sizer, is not essential (although it certainly maybe useful).

Because of these simplifications, the six-port technique

promises to have a major impact upon the next generation

of automatic network analyzers. Morever, recent theoreti-
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cal work has yielded an improved physical insight into the

method so that it may now be applied with greater confi-

dence [1].

The projected applications, however, are contingent

upon the existence or development of appropriate calibra-

tion techniques which permit one to conveniently and

accurately obtain the parameters which characterize the

six-port. Although the calibration task does not pose any

problems of a fundamental character, the supplementary

requirements for convenience and speed (while not

sacrificing accuracy), together with the general constraints

imposed by an automated environment, combine to form

the major challenge associated with the method.

As contrasted with the four-port reflectometer (which

provides the basis for the existing network analyzers), the

six-port reflectometer requires eleven rather than six con-

stants for its calibration. Given this information, one

might anticipate that the number of required terminations

or standards and thus operator and computational effort

would perhaps also be doubled. While this is nominally

true of the computational effort, the procedures can still

be handled by a desk-top programmable calculator.

Fortunately, this calibration scheme, along with others

that have been described [2], is only slightly more in-
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volvect in terms of required terminations and operator

effort than that of a four-port device. When coupled with

the projected long-term stability of the calibration results,

it appears that the total calibration effort associated with

a six-port measuring system may ultimately become sub-

stantially less than that for a four-port.

In an earlier paper [3], a calibration procedure was

described which was based upon the use of sliding

terminations of small and large reflection. Although this

method did find some use, the solution called for time

consuming iterations which, in the absence of a good

initial estimate, might fail to converge to the desired

solution. This has been corrected. In particular, the solu-

tion now exists in closed form.

II. THEORY

The theoretical approach to be followed in this analysis

was introduced in the prior paper [3]. It permits the

problem to be separated into two distinct parts. In the

first, as explained below, the six-port is reduced to an

equivalent four-port reflectometer including an associated

complex ratio detector. This requires a determination of

five of the eleven constants which describe the six-port.

The second part of the problem is to determine the six

real (or three complex) constants which characterize the

equivalent four-port.

This approach has several advantages. 1) It is not

necessary to determine all eleven constants simulta-

neously. 2) A number of solutions already exist for the

second part of the problem; these may be applied with

little or no modification after a solution to the first part

has been obtained. 3) The approach provides a convenient

method for exploiting the redundancy which is inherent in

the method. Because solutions to the four-port problem

already exist, this paper will focus primarily on the six- to

four-port reduction.

Let the six-port of interest be represented by Fig. 1. In

addition to the four power meters P3” “ “ PG, incident and

emergent waves have been identified at certain ports and

labeled al and b, (i= 2,3, 4), respectively. If by some

means one can determine the complex ratio between the

emergent wave amplitudes at two of the sidearms, e.g.,

bJbb, in terms of P3. . . P6, then the desired reduction to

a four-port has been achieved.

NoIw, by definition,

lb,\2=P, (1)

lb,12=P, (2)

so the magnitude of b3/ bd is immediately available.

Next, following the general development given in [3],

one has

P5= lKb3+ LbAl’ (3)

1Strictly speaking, proportionality factors should be included. How-
ever, since they cancel from the final result, it is convenient to omit
them.

~4
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MEASUREMENT’
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Fig. 1. Given an arbitrary six-port and four power meters, \b%l* and

az/ % may be determined at the measurement plane from observations
of P3 . ..P6.

P6 = [Mbq + lTb4\2 (4)

where K. “ ~N are constants, whose values are intrinsic

properties of the six-port. Taking the ratios of (l), (3), and

(4) to (2) gives

Iwl’=g (5)

[w-w,/’={: (6)

Iw-w’[’=pg (7)

where w is bJbd, WI is –L/K, W2 is –N/M, {is l/lK12,

and p is l/lM12. Here P3” . . PG are the observed quanti-

ties, and WI, W2, {, and p are, for the moment., assumed to

be known in terms of the six-port parameters. Thus (5)-

(7) may be considered a system of simultaneous equations

for w.

The solution to these equations for w is shown graphi-

cally in Fig. 2. In particular, the solution is given by the

intersection of three circles centered at the origin, WI,

and W2, respectively, and whose radii are *,/P, ,

m, and m. ln Fig. 2, the argument of
w ~has been arbitrarily assigned the value zero. The justifi-

cation for this follows in that the arguments of WI and W2

are determined, in part, by the positions of the reference

planes in arms 3 and 4.’ Since these have been introduced

only for convenience in the analysis, their locations may

be assigned arbitrarily. In what follows, it is convenient to

assume that these terminal planes have been chosen such

that, as shown in Fig. 2, arg WI= O. This solution may be

considered a special case of the more general one given in

[1] and where the w, takes the role of the q,. Here the

circles are exactly centered at the w,, while in the general

case this is, at best, an approximation. Moreover, since

one of the circles is centered at the origin and another on

the real axis, the number of parameters required to specify

the w,, as compared to the qt, have been reduced from six

to three,

‘This may be recognized as follows. Starting with @), a shift in the
terminal plane in arm 4 must affect arg bd while leaving P5 unaltered.
This leads to the conclusion that the change in arg b~ is accompanied by
a change in arg L in the opposite direction. The same must hold in arm
3. This leads to the above result.
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Fig. 2. The complex value of w (which is related to a2/b2) is determined by the intersection of

these circles.

Before a practical application of the reduction to a

four-port can be made, however, it is first necessary to

determine the real parameters w,, {, and p, and the

complex parameter W2, which together comprise the five

constants which characterize this reduction.

Returning to Fig. 2, the circle centered at W2 must pass

through the intersection of those centered at O and WI.

Thus, apart from its measurement, PC is determined by P3,

PA, and P5 to the extent of a choice between two possible

values. Since this is true for all values of w, there must be

i constraining relationship among P3, P4, P5, and PG and

WI, Wz, {, and p. This maybe found by eliminating w from

:5) -(7).

The elimination may be achieved as follows. First, the

eft-hand sides of (6) and (7) are expanded and ]W12

Jirninated by (5). This leaves a pair of equations which

me linear in the real and imaginary parts of w. Solving for

,hese and setting the sum of their squares equal to PJPq

cf. (5)) completes the straightforward but lengthy proce-

iure. This gives

C=lwf. (11)

It is convenient to think of P3/P4, P5/P4, P6/Pb as

representing a point in a three-dimensional “P space.”

Equation (8) then represents a quadric surface in P space.

The application of a standard test (see, for example, [6])

shows that this surface is a paraboloid, and which from

other considerations must be of the elliptic (rather than

hyperbolic) type. Moreover, it can be shown3 that this

surface is tangent to the planes P3/ Pd = O, P5/P4 = O, and

P6/P4 = o.

The parameters which characterize the paraboloid have

now been identified as a, b, c, {, and p. In a following

paragraph, an explicit expression for w (or b3/bJ will be

developed in terms of these constants and the observed

P3. . . P6. The immediate goal is to determine a.. . p.

The approach followed in the earlier paper [1] was to

observe the P3. . . P6 for five or more arbitrary and un-

known terminations. This yields a set of simultaneous

equations in a. . . p; unfortunately, as inspection of (8)

‘(2Y+b’2(3+cp2(:r‘(c-a,-b)’(%)+(b-a-c)p(%)‘
+(a–b–c){p

()
~ +a(a–b–c)$ +b(b–a–c)J$ +c(c–a–b)p~+abc=O (8)

4 4 4 4

vhere

a=]wl–w2/2

b=lw212

3This may be recognized as foflows. If in (6), for example, P5 = O, then
w is uniquely determined, i.e., w = w,. This, in turn, uniquely determines

(g) Ps/P4 and P6/P4 via (5) and (7). Since the plane P5/P4=0 and the
surface defined by (8) have onfy a single point in common, the plane is

(10) evidently tangent to the paraboloid.
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Fig. 3. A sliding short produces a circular locus in the w plane.

shows, they are of the third degree. When a solution is

attempted, using standard numerical methods, the itera-

tion tends to be lengthy and may diverge or find a wrong

root unless a reasonably good estimate of the solution has

first been obtained. The chances of obtaining the desired

root is improved by increasing the number of arbitrary

terminations and the observed P3” 0. PG, but this also

increases the iteration time.

If l;he number of terminations is increased to nine, an

alternative approach is possible. In particular, a general

quadric surface requires nine constants for its specifica-

tion, and the observed P3” “ “ P6 permits their determina-

tion via a system of nine linear equations. In principle,

this surface would be the paraboloid of interest; because

of measurement error, however, the paraboloid and

tangency conditions will only be approximately satisfied.

This procedure does yield, however, a good starting point

for an iterative solution based on (8). In the immediate

context, an alternative approach also warrants considera-

tion.

One of the objectives in seeking a solution to this

problem is to keep the operator involvement as simple as

possible. Stated in other terms, one would like to make the
maximum possible use of the data collected in anticipa-

tion of determining the remaining parameters which per-

tain to the equivalent four-port. One of the more attrac-

tive four-port calibration methods [4] calls for observing

the system response to a single-impedance standard and

to three (or more) positions each of a sliding termination

and sliding short. Thus it is appropriate to ask what can

be determined about the six- to four-port reduction, using

these measurements as a starting point.

At the measurement terminals, where the sliding short

is connected, let T= az/ b2. In the complex r plane, the

locus of r values for the sliding short is a circle, centered

at the origin and of a nominal-unit radius. Now, w (or

bJbJ is related to r via a bilinear transformation whose

parameters are those required to describe the reduced

four-port. Although these are unknown at this point, a

well-known property of any bilinear transformation is that

circles are mapped into circles (with straight lines as

limiting cases). Thus the locus in the w plane associated

with the sliding short is a circle, as shown in Fig. 3, whose

radius and center will be denoted by R and RC, respec-

tively, although these are, as yet, unknown. Together with

w, however, they satisfy the equation

IW-RC12=R2. (12)

Next, w is eliminated between (12), (5), and (6). This is

most conveniently done by noting that (12) is of the same

form as (7). Thus the desired result maybe obtained from

(8) by substituting RC and R for W1 and lPJP4, t“espec-

tively. This yields

‘(a’+2B(%3)+c(2r
‘2D(3+2E(a+’13

where
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A=a

B=((c–a–b)/2

C={zb

D=[R2(b–a– c)+a(a–b–c)]/2

E={[R2(a–b– c)+ b(b–a–c)]/2

F=[R4+R2(c– a–b)+ab]

and where

a=lwl-RC12

b=1Rc12

C= IW,]2

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

It can be shown that (13) represents an ellipse in the

P3/ P4, P5/Pd plane. Moreover, it is linear in A. . . F.
Substitution of the observed P~/Pd, P5[P4, which corre-

spond to the sliding-short positions, into (13) thus leads to

a system of linear equations which may be solved for

A/F... E/F. Although a minimum of five positions is
required, ordinarily a larger number is desirable, and a

standard least squares solution is useful. The next task is

to solve (14). ., (19) for a, b, c, {, and R2.

Although (14) 00 “ (19) represent a simultaneous set of

six equations in a, b, c, {, and R 2, some of which are of

the third degree, the remarkable result is that they can be

solved in closed form! As an intermediate step, let

a=(R2+a)/J’ (24)

~=[(R2-a)(R2-b) +2R2c]/{ (25)

y= R2+b (26)

8=( R2–a)/{ (27)

c=(R2–b). (28)

By substitution, it can be shown that

BD– AE
= a

AC– B2

DE – BF

AC– B2 =
B

(29)

(30)

BE–DC=

AD– B2 7
(31)

AF– D2 =62

AC– B2

CF– E2 ●=

AC–B= = “

(32)

(33)

Moreover, while the left-hand members of (29) – (33) are

mitten as shown for convenience, inspection shows that

hey involve only the ratios A/F. . . E/F’ which, by

~ypothesis, have been determined from the sliding-short

iata as outlined above.

955

The solution to (24) – (28) is straightforward and maybe

written

a=

b=

c=

(a+c$)(y-c)
WI – Rclz=

2(a–f3)

w,,== /3-&

a—iS

(34)

(35)

(36)

[=5 (37)

R2=~.
2

(38)

Although closed expressions for a, b, c, {, and R 2 have

now been obtained, a problem remains. While a, ~, and y

are uniquely determined by (29)–(31), only the squares of

8 and ~ may be obtained from (32) and (33). Their sign is

still undetermined. Accordingly, depending upon how

these signs are chosen, four sets of values for a.” “ R 2 are

obtained, only one of which represents the desired solu-

tion. Recalling the definition of b and c from (21) and (22)

and comparison with (27) and (28) indicates that the sign

ambiguity centers around the questions as to whether the

points wl and/or the origin are enclosed by the circle. In

the example of Fig. 3, the origin lies inside while WI lies

outside the circle. Apart from the sign ambiguity

associated with 8 and q the parameters R, Rc, J, and w

may be obtained from (34) – (38) except for the sign of

Im(RC). It can be shown, however, that it is possible to

assign the labels P3, P5, etc., to the detectors in such a way

that a positive value is obtained. This will be assumed in

what follows.

In addition to determining the proper choice of signs

for S and q the parameters IM 12and W2 have yet to be

determined. With regard to the multiple-root problem, the

existence of the fourth detector (P6) was ignored in (13)

and the development that followed. The discussion thus

pertains to a five- rather than six-port. Although the

future for the five-port appears limited, it is worth noting

that apart from the multiple-root problem, the foregoing,

together with certain observations to follow, provide for

its calibration. In the five-port mode, one ordinarily re-

quires [1] that in Fig. 3 the design be such that the circle

and the line between the origin O and WI do not intersect.
This clearly places O and WI outside the circle and pro-

vides a basis for the choice of signs. One possible way of

dealing with the ambiguity is thus to place sufficiently

stringent specifications on the subcomponents from which

the five- or six-port is constructed such that the desired

result is assured.

Another straightforward experimental procedure for de-

termining if O and/or w, is inside the circle is to de-

termine whether, for some choice of passive termination

at port 2, P3 or P5 can be made to vanish. Ordinarily, this

is done by placing an attenuator of low residual loss

ahead of the moving short. First, the short position is

adjusted for a minimum value of Pq (or PJ. Next, the
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attenuation is increased and the effect on P3 (or P5) noted.

If O (or Wl) is inside the circle, there will be some choice of

short and attenuator positions which will cause P3 (or P5)

to go to O. If this result is not obtained, the points lie

outside the circle.

This approach, however, while of value in some circum-

stances, requires too much operator effort to be consid-

ered useful in a multiple-frequency environment. An

alternative method will now be developed.

Thus far no use has been made of P6 other than its role

in obtaining (8). Unfortunately, the latter sheds little or, no

light on the immediate question. Alternatively, PG could

be substituted for P5 in (13) and the development which

follows. Unfortunately, this yields two more sign ambigui-

ties, namely, whether \W212is greater or smaller than R 2,

and whether arg W2 is greater or smaller than arg Rc.

These problems are avoided in the procedure to follow.

Let

W=u+jo

W.2= U2+jr+.

With these substitutions, (7) may be expanded

P6
s+2uu2+2vv2 +pF=u2+v2

4

where

S=-(u;+V;)

and

If the relationship (42) among s, 242,and Vz

(39)

(40)

to yield

(41)

(42)

(43)

is ignored

for the moment, (41) may be regarded as a linear equation

in s, Uz, V2, and p which represent the parameters

associated with Pb and which are yet to be found. Given a

set of values for PJ P4 and the corresponding values of u

and o, it would be possible to form a system of linear

equations from (41) which could be solved to yield s, U2,

V2, and p. In order for this scheme to work, two conditions

must be satisfied. First, one must be able to obtain the u

and o corresponding to the observed P,/ Pd; second, the

set of equations so formed must be linearly independent.

The u and v associated with the sliding-short positions

may be found as follows. The procedure is illustrated in

Fig. 3. Again, it will be assumed that the proper choices of

sign have been made so that ]Rcl, IWII, Iwl – R=\, R, and {

are known. The argument of R= will be denoted by $, and,

as noted earlier, it will be assumed that 0<$ <n. More-

over, + may be found from \Rcl, Iwll, and Iwl – Rcl by use

of the law of cosines. In a similar way, u is given by

(44)
IW12+IW,12-IW-W,I’

u=
2[W*I

and where, in accordance with the foregoing definitions,

(45)

and

Iw-w,l’={:.
4

(46)

Apart from a sign ambiguity, v could now be found by

use of the Pythagorean theorem. The following alternate

approach avoids the sign problem. From Fig. 3, it is

evident that

o=IwI sin~ (47)

while, by use of a common trigonometric identity,

Cos (+–8)– COS + Cos !9
sin O= (48)

sin ~

so that by further use of the law of cosines, (47) becomes

IW[2+[RC[2-R2-2 URCX
v=

2RCY
(49)

where Rcx and Rq are the real and imaginary parts of Rc.

By use of (44) and (49), the values of u arid o for each

of the sliding-short positions may be determined. These

together with the observed P6/P4 values may be sub-

stituted in (41) to yield a linear system of equations ins, u,

v, and p. Unfortunately, however, these equations are not

linearly independent; in order to obtain an independent

set, one must include one or more of the sliding-load

observations. Here u is still given by (44), but (49) cannot

be used for o since both R and R, are unknovvn. Instead, v

is obtained from

r
~= Iwy-uz (50)

This assumes, however, that the entire circle, or at least

those portions thereof which correspond tc} the sliding-

load data, lies on the same side of the real axis as R=.

Ordinarily, this assumption is well satisfied by practical

six-port designs.

Although a minimum of three positions from the slid-

ing-short data and one from the sliding-load data are

required to form the set, it may be desirable to form more

equations and to use a standard least squares solution. In

any event, it is now possible to solve the system for ,s, u, o,

and p.

In obtaining this result, however, it has been assumed

that IRcl, IWI – Rcl, R, and { are known, while in reality

one has four sets of possible values for these parameters.

The key point is now the following. If, and only if, the

proper set of values has been chosen, the s, u, and o

obtained above will satisfy (42).4 The procedure is thus to

obtain the s, u, and o corresponding to each of the four

sets of values for IR=1. . . ( and then test them against (42).

In theory, it would only be necessary to continue this

procedure until a set was found which satisfied (42);

because of inevitable measurement errors, ‘however, it is

desirable to test all four sets of values and tlhen retain the

one which best satisfies (42). The five parameters that

dAlth~~@ ~ ~al~tical proof is lacking, this conclusion has been

demonstrated repeatedly on a numerical basis.
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describe the mapping from the P3/P4, P5/P4, P6/P4

space to the w plane have now been completely de-

termined.

111. A FURTHER MODIFICATION TO THE PROCEDURE

As noted in earlier papers and implicit in the foregoing,

the use of four detectors results in an over-determined

system. The redundancy is exhibited in Fig. 3, for exam-

ple, where w is determined to the extent of a choice

between it and its conjugate by ]wI and /w – w, I (or

P3/ P4, P5/P4) alone. One of the more interesting chal-

lenges of the six-port technique is to exploit this re-

dundancy feature or to make certain that optimal use has

been made of the available information. The calibration

procedure just described, while correct in principle, is

subject to further improvement.

Perhaps the most obvious weakness of the foregoing

technique is that three of the four detectors (P3, P4, and

P5) were initially singled out for preferred treatment in the

five-port mode. While this permitted a determination of

Iw*[, Rc, {, and R 2, the experimental error in obtaining

these parameters is propagated to the subsequent de-

termination of Wz and p. As a rule, one would like a

“symmetric” approach where all observations are given

equal weight.

One possible way of restoring the symmetry would be

to repeat the procedure for each of the three remaining

possible combinations of the four detectors and then to

average the results. Ordinarily, this does not appear desir-

able due to the computational time involved and because

the solution may be ill-conditioned for certain detector

combinations.

Alternatively, one may use the solution thus obtained as

the starting point for an iterative solution to the set of

cubic equations which, as discussed earlier, can be ob-

tained from (8). While this effectively “erases” the prefer-

ential treatment given P3, P4, and P5, italso discards the

information that the sliding-short data lie in a circle in the

w plane. Although the experimental evidence to date
suggests that this modification does ordinarily yield an

improvement in the calibration results, further study will

be required to confirm this.

As noted earlier, an alternative procedure for obtaining

an initial starting point for a solution based on (8) is

merely to observe the collection P3/P4, P5/P4, P6/P4 for

nine or more arbitrary terminations and then to solve a

linear system of nine equations in nine unknowns. From

this, an initial approximation to the paraboloid parame-

ters may be obtained. Although this has the advantage of

~voiding the multiple-root problems, it appears that in

w-der to assure a well-conditioned solution to this linear

~ystem, it would be necessary to stipulate further that the

‘weakly reflecting” sliding terminations in fact have a

substantial reflection (e.g., 1171-0.3–0.5). The achievement

of this on a broadband basis might prove difficult in

practice.

This problem is avoided in the solution described

above; moreover, it is applicable to both the five-port and

six-port. In any event, however, both methods appear to

be viable solutions to the problem. A more definitive

statement of their relative merit must await further practi-

cal experience in their use.

IV. DETERMINATION OF w

To complete the picture, it is necessary to obtain an

explicit expression for w =-f(P3, P4, P5, P6). Returning to

Figs. 2 and 3, if Wz and V- are substituted for Rc

and R, respectively, this problem is equivalent to finding

the w associated with the sliding-short positions, which

has already been solved. Making the appropriate substitu-

tions in (44) and (49) one has

~= p3/p4–rp5/p4+l%12

21W11

(51)

P3/P4–pP6/P4+ 1W2[2–2UU2
v=

2V2
(52)

This assumes, however, that the three circles intersect in

a point, but, because of measurement error, this will only

be approximately true. The treatment of this problem and

a more complete development of the theory contained

herein will be found in another paper by the author [5].

V. SUMMARY

This paper sketches the mathematical basis for and

describes an experimental procedure which permits the

six-port calibration problem to be reduced to that of a

four-port. Following this, the same experimental results

may be used to calibrate the reduced four-port [4]. A more

complete treatment and theoretical development of this

and related problems are given in a related paper by the

author [5].
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