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false lock phenomenon, and that high-speed high-ac-
curacy demodulation is achievable by a simple configura-
tion. The influences of some degradation factors to bit-
error-rate characteristics are studied experimentally, and
their design objectives are stated.
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Calibrating the Six-Port Reflectometer by
Means of Sliding Terminations

GLENN F. ENGEN, SENIOR MEMBER, IEEE

Abstract—The six-port technique promises to have a major impact on
the next generation of automatic network amalyzers because complex
heterodyne methods may be replaced by simple amplitude detectors. This
projection, however, is predicated upon the existence or development of
calibration techniques which permit one to conveniently and accurately
obtain the parameters which characterize the six-port. This paper describes
a number of substantial refinements to a previously described procedure
which is based upon the use of sliding terminations.

I. INTRODUCTION

HE APPEAL OF the six-port measurement concept

stems largely from the simplification which it affords
in the associated detection circuitry. Instead of complex
heterodyne schemes, simple diode, thermoelectric, or
bolometric detectors may be used. Because frequency
conversion and mixing have been eliminated, practical
experience, to date at least, indicates that a high order of
stability in the source frequency, e.g., a frequency synthe-
sizer, is not essential (although it certainly may be useful).
Because of these simplifications, the six-port technique
promises to have a major impact upon the next generation
of automatic network analyzers. Morever, recent theoreti-
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cal work has yielded an improved physical insight into the
method so that it may now be applied with greater confi-
dence [1].

The projected applications, however, are contingent
upon the existence or development of appropriate calibra-
tion techniques which permit one to conveniently and
accurately obtain the parameters which characterize the
six-port. Although the calibration task does not pose any
problems of a fundamental character, the supplementary
requirements for convenience and speed (while not
sacrificing accuracy), together with the general constraints
imposed by an automated environment, combine to form
the major challenge associated with the method.

As contrasted with the four-port reflectometer (which
provides the basis for the existing network analyzers), the
six-port reflectometer requires eleven rather than six con-
stants for its calibration. Given this information, one
might anticipate that the number of required terminations
or standards and thus operator and computational effort
would perhaps also be doubled. While this is nominally
true of the computational effort, the procedures can still
be handled by a desk-top programmable calculator.

Fortunately, this calibration scheme, along with others
that have been described [2], is only slightly more in-
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volved in terms of required terminations and operator
effort than that of a four-port device. When coupled with
the projected long-term stability of the calibration results,
it appears that the total calibration effort associated with
a six-port measuring system may ultimately become sub-
stantially less than that for a four-port.

In an earlier paper [3], a calibration procedure was
described which was based upon the use of sliding
terminations of small and large reflection. Although this
method did find some use, the solution called for time
consuming iterations which, in the absence of a good
initial estimate, might fail to converge to the desired
solution. This has been corrected. In particular, the solu-
tion now exists in closed form.

II. THEORY

The theoretical approach to be followed in this analysis
was introduced in the prior paper {3]. It permits the
problem to be separated into two distinct parts. In the
first, as explained below, the six-port is reduced to an
equivalent four-port reflectometer including an associated
complex ratio detector. This requires a determination of
five of the eleven constants which describe the six-port.
The second part of the problem is to determine the six
real (or three complex) constants which characterize the
equivalent four-port.

This approach has several advantages. 1) It is not
necessary to determine all eleven constants simulta-
neously. 2) A number of solutions already exist for the
second part of the problem; these may be applied with
little or no modification after a solution to the first part
has been obtained. 3) The approach provides a convenient
method for exploiting the redundancy which is inherent in
the method. Because solutions to the four-port problem
already exist, this paper will focus primarily on the six- to
four-port reduction.

Let the six-port of interest be represented by Fig. 1. In
addition to the four power meters P - - Pg, incident and
emergent waves have been identified at certain ports and
labeled a, and b, (i=2,3,4), respectively. If by some
means one can determine the complex ratio between the
emergent wave amplitudes at two of the sidearms, e.g.,
b,/ b,, in terms of P;- - - Pg, then the desired reduction to
a four-port has been achieved.

Now, by definition',

|b3|2=P3
[baf*= P,

(1)
@)

so the magnitude of b;/b, is immediately available.
Next, following the general development given in [3],
one has

Ps=|Kb,+ Lb,|’ (3)

IStrictly speaking, proportionality factors should be included. How-
ever, since they cancel from the final result, it is convenient to omit
them.
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where K--- N are constants, whose values are intrinsic
properties of the six-port. Taking the ratios of (1), (3), and
(4) to (2) gives

P

2_*3
WP = 5)

P

_ 2_¢ 5
o= P == (6)

P

_ 2,20
o= wif=p ™)

where w is by /b,, w,is —L/K, wyis —N/M, { is 1/|K|%,
and p is 1/|M|*. Here P,- - P are the observed quanti-
ties, and wy, w,, {, and p are, for the moment, assumed to
be known in terms of the six-port parameters. Thus (5)—
(7) may be considered a system of simultaneous equations
for w.

The solution to these equations for w is shown graphi-
cally in Fig. 2. In particular, the solution is given by the
intersection of three circles centered at the origin, w,,

and w,, respectively, and whose radii are \/Fj /Py,

V{P;/P,,and \VpPs/P, . In Fig. 2, the argument of
5 6/ L4

w, has been arbitrarily assigned the value zero. The justifi-
cation for this follows in that the arguments of w; and w,
are determined, in part, by the positions of the reference
planes in arms 3 and 4.7 Since these have been introduced
only for convenience in the analysis, their locations may
be assigned arbitrarily. In what follows, it is convenient to
assume that these terminal planes have been chosen such
that, as shown in Fig. 2, arg w,=0. This solution may be
considered a special case of the more general one given in
[1] and where the w, takes the role of the g, Here the
circles are exactly centered at the w, while in the general
case this is, at best, an approximation. Moreover, since
one of the circles is centered at the origin and another on
the real axis, the number of parameters required to specify
the w,, as compared to the g, have been reduced from six
to three.

2This may be recognized as follows. Starting with (3), a shift in the
terminal plane in arm 4 must affect arg b, while leaving Ps unaltered.
This leads to the conclusion that the change in arg b, is accompanied by

a change in arg L in the opposite direction. The same must hold in arm
3. This leads to the above result.
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Fig. 2. The complex value of w (which is related to a,/b,) is determined by the intersection of
these circles.

Before a practical application of the reduction to a
four-port can be made, however, it is first necessary to
determine the real parameters w,, {, and p, and the
complex parameter w,, which together comprise the five
constants which characterize this reduction.

Returning to Fig. 2, the circle centered at w, must pass
through the intersection of those centered at 0 and w,.
Thus, apart from its measurement, P is determined by P;,
P,, and Ps to the extent of a choice between two possible
values. Since this is true for all values of w, there must be
a constraining relationship among P, P,, Ps, and P¢ and
Wy, Wy, §, and p. This may be found by eliminating w from
5)-().

The elimination may be achieved as follows. First, the
eft-hand sides of (6) and (7) are expanded and |w|?
sliminated by (5). This leaves a pair of equations which
are linear in the real and imaginary parts of w. Solving for
hese and setting the sum of their squares equal to P,/ P,
‘cf. (5)) completes the straightforward but lengthy proce-
lure. This gives

P.\2 P \2 P.\2 P,P PP,
L R o R o RO C S R

4

+(a—b—c)§p( Lt
4
vhere
a=|w, _W2|2 )]
b=|w,[’ (10)

c=|w,[%. (11)
It is convenient to think of P,/P, Ps/P, P;/P, as
representing a point in a three-dimensional “P space.”
Equation (8) then represents a quadric surface in P space.
The application of a standard test (see, for example, [6])
shows that this surface is a paraboloid, and which from
other considerations must be of the elliptic (rather than
hyperbolic) type. Moreover, it can be shown® that this
surface is tangent to the planes P,/ P,=0, Ps/P,=0, and
P,/ P,=0.

The parameters which characterize the paraboloid have
now been identified as a, b, ¢, {, and p. In a following
paragraph, an explicit expression for w (or b;/b,) will be
developed in terms of these constants and the observed
Py- - - Pg. The immediate goal is to determine a- - - p.

The approach followed in the earlier paper [1] was to
observe the P;--- P, for five or more arbitrary and un-
known terminations. This yields a set of simultaneous
equations in a--- p; unfortunately, as inspection of (8)

4

6 P,y Py Py
+a(la—b—c)—+b(b—a—c){——+c(c—a—blo==+abc=0 (8
Pz) (a=b=€) 2 +b(b—a=)s 5 +elc—a=b)p e +abe=0 (3)

3This may be recognized as follows. If in (6), for example, Ps=0, then
w is uniquely determined, i.e., w=w,. This, in turn, uniquely determines
P3/P4 and P¢/P, via (5) and (7). Since the plane Ps/P,=0 and the
surface defined by (8) have only a single point in common, the plane is
evidently tangent to the paraboloid.
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Fig. 3. A sliding short produces a circular locus in the w plane.

shows, they are of the third degree. When a solution is
attempted, using standard numerical methods, the itera-
tion tends to be lengthy and may diverge or find a wrong
root unless a reasonably good estimate of the solution has
first been obtained. The chances of obtaining the desired
root is improved by increasing the number of arbitrary
terminations and the observed P;--- P, but this also
increases the iteration time.

If the number of terminations is increased to nine, an
alternative approach is possible. In particular, a general
quadric surface requires nine constants for its specifica-
tion, and the observed P;--- P¢ permits their determina-
tion via a system of nine linear equations. In principle,
this surface would be the paraboloid of interest; because
of measurement error, however, the paraboloid and
tangency conditions will only be approximately satisfied.
This procedure does yield, however, a good starting point
for an iterative solution based on (8). In the immediate
context, an alternative approach also warrants considera-
tion.

One of the objectives in seeking a solution to this
problem is to keep the operator involvement as simple as
possible. Stated in other terms, one would like to make the
maximum possible use of the data collected in anticipa-
tion of determining the remaining parameters which per-
tain to the equivalent four-port. One of the more attrac-
tive four-port calibration methods [4] calls for observing
the system response to a single-impedance standard and
to three (or more) positions each of a sliding termination
and sliding short. Thus it is appropriate to ask what can

be determined about the six- to four-port reduction, using
these measurements as a starting point.

At the measurement terminals, where the sliding short
is connected, let I'=a,/b,. In the complex T plane, the
locus of T values for the sliding short is a circle, centered
at the origin and of a nominal-unit radius. Now, w (or
b,/ b,) is related to T via a bilinear transformation whose
parameters are those required to describe the reduced
four-port. Although these are unknown at this point, a
well-known property of any bilinear transformation is that
circles are mapped into circles (with straight lines as
limiting cases). Thus the locus in the w plane associated
with the sliding short is a circle, as shown in Fig. 3, whose
radius and center will be denoted by R and R, respec-
tively, although these are, as yet, unknown. Together with
w, however, they satisfy the equation

|w— R |*=R2 (12)

Next, w is eliminated between (12), (5), and (6). This is
most conveniently done by noting that (12) is of the same
form as (7). Thus the desired result may be obtained from
(8) by substituting R, and R for w, and {P¢/P,, respec-
tively. This yields

2\ P,P P \?
A( P4) +2B( w7 |\ 7

4

P, Ps _
+2D(?4)+2E(7):)+F—0 (13)

where
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A=a (14)
B={(c—a—b)/2 (15)
C=¢% (16)
D=[R*(b—a~c)+a(a—b—c)]/2 a7n
E=§[R2(a—b—c)+b(b~a—c)]/2 (18)
F=[R*+R*c—a—b)+ab] (19)
and where

a=|w,— R (20)

b=|R| (21)

c=|w (22)

L
{= KE (23)

It can be shown that (13) represents an ellipse in the
P,/ P, P;/P, plane. Moreover, it is linear in A4---F.
Substitution of the observed P,/ P,, Ps/P,, which corre-
spond to the sliding-short positions, into (13) thus leads to
a system of linear equations which may be solved for
A/F---E/F. Although a minimum of five positions is
required, ordinarily a larger number is desirable, and a
standard least squares solution is useful. The next task is
to solve (14)- - - (19) for a, b, c, {, and R~

Although (14)- - (19) represent a simultaneous set of
six equations in a, b, ¢, {, and R?2, some of which are of
the third degree, the remarkable result is that they can be
solved in closed form! As an intermediate step, let

a=(R*+a)/¢ (24)
B=[(R*—a)(R*-b)+2R%]/§ (25)
y=R%*+b (26)
8=(R*-a)/¢ (27)
e=(R*-b). (28)
By substitution, it can be shown that
BD—AE
—_— = 29
AC—B? * 29)
DE— BF
—_—= 30
5 F (30)
BE-DC
—_— = 31
AD—B? (1)
AF—D?
=2 32
AC—B? (32)
CF-E*
——— =¢" 33
AC-B2 ¢ (33)

Moreover, while the left-hand members of (29)~(33) are
vritten as shown for convenience, inspection shows that
hey involve only the ratios A/F---E/F which, by
1ypothesis, have been determined from the sliding-short
lata as outlined above.
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The solution to (24)—(28) is straightforward and may be
written

b=|RP= 15 (35)
e=mfp= L% (36)
(=15 (37)
R2=‘Y;€. (38)

Although closed expressions for a, b, ¢, {, and R have
now been obtained, a problem remains. While «, 8, and y
are uniquely determined by (29)—(31), only the squares of
8 and € may be obtained from (32) and (33). Their sign is
still undetermined. Accordingly, depending upon how
these signs are chosen, four sets of values for a- - - R? are
obtained, only one of which represents the desired solu-
tion. Recalling the definition of » and ¢ from (21) and (22)
and comparison with (27) and (28) indicates that the sign
ambiguity centers around the questions as to whether the
points w, and/or the origin are enclosed by the circle. In
the example of Fig. 3, the origin lies inside while w, lies
outside the circle. Apart from the sign ambiguity
associated with 8 and ¢, the parameters R, R, {, and w
may be obtained from (34)—(38) except for the sign of
Im(R,). It can be shown, however, that it is possible to
assign the labels P;, P, etc., to the detectors in such a way
that a positive value is obtained. This will be assumed in
what follows.

In addition to determining the proper choice of signs
for 8 and ¢, the parameters [M[> and w, have yet to be
determined. With regard to the multiple-root problem, the
existence of the fourth detector (P) was ignored in (13)
and the development that followed. The discussion thus
pertains to a five- rather than six-port. Although the
future for the five-port appears limited, it is worth noting
that apart from the multiple-root problem, the foregoing,
together with certain observations to follow, provide for
its calibration. In the five-port mode, one ordinarily re-
quires [1] that in Fig. 3 the design be such that the circle
and the line between the origin 0 and w, do not intersect.
This clearly places 0 and w, outside the circle and pro-
vides a basis for the choice of signs. One possible way of
dealing with the ambiguity is thus to place sufficiently
stringent specifications on the subcomponents from which
the five- or six-port is constructed such that the desired
result is assured.

Another straightforward experimental procedure for de-
termining if 0 and/or w, is inside the circle is to de-
termine whether, for some choice of passive termination
at port 2, P, or P5 can be made to vanish. Ordinarily, this
is done by placing an attenuator of low residual loss
ahead of the moving short. First, the short position is
adjusted for a minimum value of P; (or Pg). Next, the
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attenuation is increased and the effect on P; (or Ps) noted.
If 0 (or w)) is inside the circle, there will be some choice of
short and attenuator positions which will cause P; (or Ps)
to go to 0. If this result is not obtained, the points lie
outside the circle.

This approach, however, while of value in some circum-
stances, requires too much operator effort to be consid-
ered useful in a multiple-frequency environment. An
alternative method will now be developed.

Thus far no use has been made of Py other than its role
in obtaining (8). Unfortunately, the latter sheds little or no
light on the immediate question. Alternatively, P, could
be substituted for Ps in (13) and the development which
follows. Unfortunately, this yields two more sign ambigui-
ties, namely, whether |w,|* is greater or smaller than R?,
and whether arg w, is greater or smaller than arg R..
These problems are avoided in the procedure to follow.

Let

(39)
(40)

w=y+jo

Wy = Uy + J0,.

With these substitutions, (7) may be expanded to yield

s+2uu2+2w2+p%=u2+02 (41)
where
=~ (1 +03) (42)
and
1
p= P (43)

If the relationship (42) among s, u,, and v, is ignored
for the moment, (41) may be regarded as a linear equation
in s, u,, v, and p which represent the parameters
associated with P, and which are yet to be found. Given a
set of values for P,/ P, and the corresponding values of u
and v, it would be possible to form a system of linear
equations from (41) which could be solved to yield s, u,,
v,, and p. In order for this scheme to work, two conditions
must be satisfied. First, one must be able to obtain the u
and v corresponding to the observed P4/ P,; second, the
set of equations so formed must be linearly independent.

The u and v associated with the sliding-short positions
may be found as follows. The procedure is illustrated in
Fig. 3. Again, it will be assumed that the proper choices of
sign have been made so that |R.|, |w|, |[w;—R.], R, and ¢
are known. The argument of R, will be denoted by ¥, and,
as noted earlier, it will be assumed that 0 <y <. More-
over, Y may be found from |R,|, |w,|, and |w,— R| by use
of the law of cosines. In a similar way, u is given by

_ [wi +|w >~ |w—w,|?
u= 2] “4

and where, in accordance with the foregoing definitions,

L (45)

w|?=
=32
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and

P
[w—w1|2=§73. (46)
Apart from a sign ambiguity, v could now be found by
use of the Pythagorean theorem. The following alternate
approach avoids the sign problem. From Fig. 3, it is
evident that

v=|w|sin ¢ (47)
while, by use of a common trigonometric identity,
sin #= S (y—8)—cos y cos b (48)

sin ¢
so that by further use of the law of cosines, (47) becomes
_ WP+IRP-R*-2uR,,

o= 2R

4

(49)

where R, and R, are the real and imaginary parts of R..

By use of (44) and (49), the values of u and v for each
of the sliding-short positions may be determined. These
together with the observed Pg/P, values may be sub-
stituted in (41) to yield a linear system of equations in s, u,
v, and p. Unfortunately, however, these equations are not
linearly independent; in order to obtain an independent
set, one must include one or more of the sliding-load
observations. Here u is still given by (44), but (49) cannot
be used for v since both R and R, are unknown. Instead, v

is obtained from
v=\|w—u* . (50)

This assumes, however, that the entire circle, or at least
those portions thereof which correspond to the sliding-
load data, lies on the same side of the real axis as R..
Ordinarily, this assumption is well satisfied by practical
six-port designs.

Although a minimum of three positions from the slid-
ing-short data and one from the sliding-load data are
required to form the set, it may be desirable to form more
equations and to use a standard least squares solution. In
any event, it is now possible to solve the system for s, u, v,
and p.

In obtaining this result, however, it has been assumed
that |R.|, |w,— R.|, R, and { are known, while in reality
one has four sets of possible values for these parameters.
The key point is now the following. If, and only if, the
proper set of values has been chosen, the s, u, and v
obtained above will satisfy (42).* The procedure is thus to
obtain the s, u, and v corresponding to each of the four
sets of values for |R_|- - - { and then test them against (42).
In theory, it would only be necessary to continue this
procedure until a set was found which satisfied (42);
because of inevitable measurement errors, however, it is
desirable to test all four sets of values and then retain the
one which best satisfies (42). The five parameters that

4Although an analytical proof is lacking, this conclusion has been
demonstrated repeatedly on a numerical basis.
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describe the mapping from the P,/P, P;/P, P¢;/P,
space to the w plane have now been completely de-
termined.

IIL

As noted in earlier papers and implicit in the foregoing,
the use of four detectors results in an over-determined
system. The redundancy is exhibited in Fig. 3, for exam-
ple, where w is determined to the extent of a choice
between it and its conjugate by |w| and |w—w,] (or
P,/ P, Ps/P,) alone. One of the more interesting chal-
lenges of the six-port technique is to exploit this re-
dundancy feature or to make certain that optimal use has
been made of the available information. The calibration
procedure just described, while correct in principle, is
subject to further improvement.

Perhaps the most obvious weakness of the foregoing
technique is that three of the four detectors (P,, P,, and
P;) were initially singled out for preferred treatment in the
five-port mode. While this permitted a determination of
[wil, R, §, and R? the experimental error in obtaining
these parameters is propagated to the subsequent de-
termination of w, and p. As a rule, one would like a
“symmetric” approach where all observations are given
equal weight.

One possible way of restoring the symmetry would be
to repeat the procedure for each of the three remaining
possible combinations of the four detectors and then to
average the results. Ordinarily, this does not appear desir-
able due to the computational time involved and because
the solution may be ill-conditioned for certain detector
combinations.

Alternatively, one may use the solution thus obtained as
the starting point for an iterative solution to the set of
cubic equations which, as discussed earlier, can be ob-
tained from (8). While this effectively “erases” the prefer-
ential treatment given P,, P,, and Ps, it also discards the
information that the sliding-short data lie in a circle in the
w plane. Although the experimental evidence to date
suggests that this modification does ordinarily yield an
improvement in the calibration results, further study will
be required to confirm this.

As noted earlier, an alternative procedure for obtaining
an initial starting point for a solution based on (8) is
merely to observe the collection P,/ P,, Ps/P,, Ps/P, for
nine or more arbitrary terminations and then to solve a
linear system of nine equations in nine unknowns. From
this, an initial approximation to the paraboloid parame-
ters may be obtained. Although this has the advantage of
avoiding the multiple-root problems, it appears that in
order to assure a well-conditioned solution to this linear
system, it would be necessary to stipulate further that the
‘weakly reflecting” sliding terminations in fact have a

A FURTHER MODIFICATION TO THE PROCEDURE
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substantial reflection (e.g., |T|~0.3-0.5). The achievement
of this on a broadband basis might prove difficult in
practice.

This problem is avoided in the solution described
above; moreover, it is applicable to both the five-port and
six-port. In any event, however, both methods appear to
be viable solutions to the problem. A more definitive
statement of their relative merit must await further practi-
cal experience in their use.

IV. DETERMINATION OF w

To complete the picture, it is necessary to obtain an
explicit expression for w= f(P,, P,, Ps, P¢). Returning to
Figs. 2 and 3, if w, and \p P,/ P, are substituted for R,
and R, respectively, this problem is equivalent to finding
the w associated with the sliding-short positions, which
has already been solved. Making the appropriate substitu-
tions in (44) and (49) one has

- P3/P4_§P5/P4"‘|W1|2

2wy S
P,/P,—pPs/Py+|w,|*—2
o= 3/ Pa—p 6/2042 || ““2. (52)

This assumes, however, that the three circles intersect in
a point, but, because of measurement error, this will only
be approximately true. The treatment of this problem and
a more complete development of the theory contained
herein will be found in another paper by the author [5].

V. SUMMARY

This paper sketches the mathematical basis for and
describes an experimental procedure which permits the
six-port calibration problem to be reduced to that of a
four-port. Following this, the same experimental results
may be used to calibrate the reduced four-port [4]. A more
complete treatment and theoretical development of this
and related problems are given in a related paper by the
author [5].
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